Leak detection in low-pressure gas distribution networks by probabilistic methods

The presence of leaks is a prevalent issue for aging gas distribution systems across the globe. These events, if not detected in time, may bring about environmental and health hazards, besides economic losses. Therefore, the development of efficient detection, quantification, and localization method...

Full description

Saved in:
Bibliographic Details
Main Authors: Gupta, Payal, Zan, Thaw Tar Thein, Wang, Mengmeng, Dauwels, Justin, Ukil, Abhisek
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/141666
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The presence of leaks is a prevalent issue for aging gas distribution systems across the globe. These events, if not detected in time, may bring about environmental and health hazards, besides economic losses. Therefore, the development of efficient detection, quantification, and localization methods is crucial to all gas companies worldwide. In this paper, we present a leak monitoring system, called Leak Analytics System (LAS) using a probabilistic approach to determine the location and the rate (severity) of leakage in low-pressure gas distribution networks. This work aims to develop a robust, cost-effective, and real-time online monitoring system for low-pressure gas distribution networks. The leakage events are estimated using pressure and flow data obtained from steady-state modeling of the gas network. The robustness of the methodology is illustrated by analyzing gas networks in the presence of measurement errors, which account for unavoidable sensor noise in flow and pressure data. The feasibility of the proposed method is demonstrated on a small artificial gas network. Moreover, the method is applied to a section of the Singapore gas distribution network for a single as well as multiple leak scenarios. It is also experimentally shown that the severity of the leak and the location for a single leak scenario can be determined within an accuracy of 95% and 80% respectively, even in the presence of strong noise.