Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics
The small-signal impedance modeling of a modular multilevel converter (MMC) is the key for analyzing resonance and stability of MMC-based power electronic systems. The MMC is a power converter with a multifrequency response due to its significant steady-state harmonic components in the arm currents...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141692 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-141692 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1416922020-06-10T03:18:24Z Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics Lyu, Jing Zhang, Xin Cai, Xu Molinas, Marta School of Electrical and Electronic Engineering Engineering::Electrical and electronic engineering Harmonic State-space (HSS) Impedance The small-signal impedance modeling of a modular multilevel converter (MMC) is the key for analyzing resonance and stability of MMC-based power electronic systems. The MMC is a power converter with a multifrequency response due to its significant steady-state harmonic components in the arm currents and capacitor voltages. These internal harmonic dynamics may have great influence on the terminal characteristics of the MMC, which, therefore, are essential to be considered in the MMC impedance modeling. In this paper, the harmonic state-space (HSS) modeling approach is first introduced to characterize the multiharmonic coupling behavior of the MMC. On this basis, the small-signal impedance models of the MMC are then developed based on the proposed HSS model of the MMC, which are able to include all the internal harmonics within the MMC, leading to accurate impedance models. Besides, different control schemes for the MMC, such as open-loop control, ac voltage closed-loop control, and circulating current closed-loop control, have also been considered during the modeling process, which further reveals the impact of the MMC internal dynamics and control dynamics on the MMC impedance. Furthermore, an impedance-based stability analysis of the MMC-high-voltage direct current connected wind farm has been carried out to show how the HSS-based MMC impedance model can be used in practical system analysis. Finally, the proposed impedance models are validated by both simulation and experimental measurements. 2020-06-10T03:18:24Z 2020-06-10T03:18:24Z 2018 Journal Article Lyu, J., Zhang, X., Cai, X., & Molinas, M. (2019). Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics. IEEE Transactions on Power Electronics, 34(3), 2134-2148. doi:10.1109/TPEL.2018.2842682 0885-8993 https://hdl.handle.net/10356/141692 10.1109/TPEL.2018.2842682 2-s2.0-85047820529 3 34 2134 2148 en IEEE Transactions on Power Electronics © 2018 IEEE. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering Harmonic State-space (HSS) Impedance |
spellingShingle |
Engineering::Electrical and electronic engineering Harmonic State-space (HSS) Impedance Lyu, Jing Zhang, Xin Cai, Xu Molinas, Marta Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics |
description |
The small-signal impedance modeling of a modular multilevel converter (MMC) is the key for analyzing resonance and stability of MMC-based power electronic systems. The MMC is a power converter with a multifrequency response due to its significant steady-state harmonic components in the arm currents and capacitor voltages. These internal harmonic dynamics may have great influence on the terminal characteristics of the MMC, which, therefore, are essential to be considered in the MMC impedance modeling. In this paper, the harmonic state-space (HSS) modeling approach is first introduced to characterize the multiharmonic coupling behavior of the MMC. On this basis, the small-signal impedance models of the MMC are then developed based on the proposed HSS model of the MMC, which are able to include all the internal harmonics within the MMC, leading to accurate impedance models. Besides, different control schemes for the MMC, such as open-loop control, ac voltage closed-loop control, and circulating current closed-loop control, have also been considered during the modeling process, which further reveals the impact of the MMC internal dynamics and control dynamics on the MMC impedance. Furthermore, an impedance-based stability analysis of the MMC-high-voltage direct current connected wind farm has been carried out to show how the HSS-based MMC impedance model can be used in practical system analysis. Finally, the proposed impedance models are validated by both simulation and experimental measurements. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Lyu, Jing Zhang, Xin Cai, Xu Molinas, Marta |
format |
Article |
author |
Lyu, Jing Zhang, Xin Cai, Xu Molinas, Marta |
author_sort |
Lyu, Jing |
title |
Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics |
title_short |
Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics |
title_full |
Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics |
title_fullStr |
Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics |
title_full_unstemmed |
Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics |
title_sort |
harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/141692 |
_version_ |
1681059587881435136 |