Sentic LSTM : a hybrid network for targeted aspect-based sentiment analysis
Sentiment analysis has emerged as one of the most popular natural language processing (NLP) tasks in recent years. A classic setting of the task mainly involves classifying the overall sentiment polarity of the inputs. However, it is based on the assumption that the sentiment expressed in a sentence...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141695 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-141695 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1416952020-06-10T03:23:02Z Sentic LSTM : a hybrid network for targeted aspect-based sentiment analysis Ma, Yukun Peng, Haiyun Khan, Tahir Cambria, Erik Hussain, Amir School of Computer Science and Engineering Engineering::Computer science and engineering Sentiment Analysis Commonsense Knowledge Sentiment analysis has emerged as one of the most popular natural language processing (NLP) tasks in recent years. A classic setting of the task mainly involves classifying the overall sentiment polarity of the inputs. However, it is based on the assumption that the sentiment expressed in a sentence is unified and consistent, which does not hold in the reality. As a fine-grained alternative of the task, analyzing the sentiment towards a specific target and aspect has drawn much attention from the community for its more practical assumption that sentiment is dependent on a particular set of aspects and entities. Recently, deep neural models have achieved great successes on sentiment analysis. As a functional simulation of the behavior of human brains and one of the most successful deep neural models for sequential data, long short-term memory (LSTM) networks are excellent in learning implicit knowledge from data. However, it is impossible for LSTM to acquire explicit knowledge such as commonsense facts from the training data for accomplishing their specific tasks. On the other hand, emerging knowledge bases have brought a variety of knowledge resources to our attention, and it has been acknowledged that incorporating the background knowledge is an important add-on for many NLP tasks. In this paper, we propose a knowledge-rich solution to targeted aspect-based sentiment analysis with a specific focus on leveraging commonsense knowledge in the deep neural sequential model. To explicitly model the inference of the dependent sentiment, we augment the LSTM with a stacked attention mechanism consisting of attention models for the target level and sentence level, respectively. In order to explicitly integrate the explicit knowledge with implicit knowledge, we propose an extension of LSTM, termed Sentic LSTM. The extended LSTM cell includes a separate output gate that interpolates the token-level memory and the concept-level input. In addition, we propose an extension of Sentic LSTM by creating a hybrid of the LSTM and a recurrent additive network that simulates sentic patterns. In this paper, we are mainly concerned with a joint task combining the target-dependent aspect detection and targeted aspect-based polarity classification. The performance of proposed methods on this joint task is evaluated on two benchmark datasets. The experiment shows that the combination of proposed attention architecture and knowledge-embedded LSTM could outperform state-of-the-art methods in two targeted aspect sentiment tasks. We present a knowledge-rich solution for the task of targeted aspect-based sentiment analysis. Our model can effectively incorporate the commonsense knowledge into the deep neural network and be trained in an end-to-end manner. We show that the two-step attentive neural architecture as well as the proposed Sentic LSTM and H-Sentic-LSTM can achieve an improved performance on resolving the aspect categories and sentiment polarity for a targeted entity in its context over state-of-the-art systems. 2020-06-10T03:23:02Z 2020-06-10T03:23:02Z 2018 Journal Article Ma, Y., Peng, H., Khan, T., Cambria, E., & Hussain, A. (2018). Sentic LSTM : a hybrid network for targeted aspect-based sentiment analysis. Cognitive Computation, 10(4), 639-650. doi:10.1007/s12559-018-9549-x 1866-9956 https://hdl.handle.net/10356/141695 10.1007/s12559-018-9549-x 2-s2.0-85043681304 4 10 639 650 en Cognitive Computation © 2018 Springer Science+Business Media, LLC, part of Springer Nature. All rights reserved. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering Sentiment Analysis Commonsense Knowledge |
spellingShingle |
Engineering::Computer science and engineering Sentiment Analysis Commonsense Knowledge Ma, Yukun Peng, Haiyun Khan, Tahir Cambria, Erik Hussain, Amir Sentic LSTM : a hybrid network for targeted aspect-based sentiment analysis |
description |
Sentiment analysis has emerged as one of the most popular natural language processing (NLP) tasks in recent years. A classic setting of the task mainly involves classifying the overall sentiment polarity of the inputs. However, it is based on the assumption that the sentiment expressed in a sentence is unified and consistent, which does not hold in the reality. As a fine-grained alternative of the task, analyzing the sentiment towards a specific target and aspect has drawn much attention from the community for its more practical assumption that sentiment is dependent on a particular set of aspects and entities. Recently, deep neural models have achieved great successes on sentiment analysis. As a functional simulation of the behavior of human brains and one of the most successful deep neural models for sequential data, long short-term memory (LSTM) networks are excellent in learning implicit knowledge from data. However, it is impossible for LSTM to acquire explicit knowledge such as commonsense facts from the training data for accomplishing their specific tasks. On the other hand, emerging knowledge bases have brought a variety of knowledge resources to our attention, and it has been acknowledged that incorporating the background knowledge is an important add-on for many NLP tasks. In this paper, we propose a knowledge-rich solution to targeted aspect-based sentiment analysis with a specific focus on leveraging commonsense knowledge in the deep neural sequential model. To explicitly model the inference of the dependent sentiment, we augment the LSTM with a stacked attention mechanism consisting of attention models for the target level and sentence level, respectively. In order to explicitly integrate the explicit knowledge with implicit knowledge, we propose an extension of LSTM, termed Sentic LSTM. The extended LSTM cell includes a separate output gate that interpolates the token-level memory and the concept-level input. In addition, we propose an extension of Sentic LSTM by creating a hybrid of the LSTM and a recurrent additive network that simulates sentic patterns. In this paper, we are mainly concerned with a joint task combining the target-dependent aspect detection and targeted aspect-based polarity classification. The performance of proposed methods on this joint task is evaluated on two benchmark datasets. The experiment shows that the combination of proposed attention architecture and knowledge-embedded LSTM could outperform state-of-the-art methods in two targeted aspect sentiment tasks. We present a knowledge-rich solution for the task of targeted aspect-based sentiment analysis. Our model can effectively incorporate the commonsense knowledge into the deep neural network and be trained in an end-to-end manner. We show that the two-step attentive neural architecture as well as the proposed Sentic LSTM and H-Sentic-LSTM can achieve an improved performance on resolving the aspect categories and sentiment polarity for a targeted entity in its context over state-of-the-art systems. |
author2 |
School of Computer Science and Engineering |
author_facet |
School of Computer Science and Engineering Ma, Yukun Peng, Haiyun Khan, Tahir Cambria, Erik Hussain, Amir |
format |
Article |
author |
Ma, Yukun Peng, Haiyun Khan, Tahir Cambria, Erik Hussain, Amir |
author_sort |
Ma, Yukun |
title |
Sentic LSTM : a hybrid network for targeted aspect-based sentiment analysis |
title_short |
Sentic LSTM : a hybrid network for targeted aspect-based sentiment analysis |
title_full |
Sentic LSTM : a hybrid network for targeted aspect-based sentiment analysis |
title_fullStr |
Sentic LSTM : a hybrid network for targeted aspect-based sentiment analysis |
title_full_unstemmed |
Sentic LSTM : a hybrid network for targeted aspect-based sentiment analysis |
title_sort |
sentic lstm : a hybrid network for targeted aspect-based sentiment analysis |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/141695 |
_version_ |
1681059199217303552 |