Model-based condition monitoring of a vanadium redox flow battery
The safe, efficient and durable utilization of a vanadium redox flow battery (VRB) requires accurate monitoring of its state of charge (SOC) and capacity decay. This paper focuses on the unbiased model parameter identification and model-based monitoring of both the SOC and capacity decay of a VRB. S...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/141904 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The safe, efficient and durable utilization of a vanadium redox flow battery (VRB) requires accurate monitoring of its state of charge (SOC) and capacity decay. This paper focuses on the unbiased model parameter identification and model-based monitoring of both the SOC and capacity decay of a VRB. Specifically, a first-order resistor-capacitance (RC) model was used to simulate the dynamics of the VRB. A recursive total least squares (RTLS) method was exploited to attenuate the impact of external disturbances and accurately track the change of model parameters in realtime. The RTLS-based identification method was further integrated with an H-infinity filter (HIF)-based state estimator to monitor the SOC and capacity decay of the VRB in real-time. Experiments were carried out to validate the proposed method. The results suggested that the proposed method can achieve unbiased model parameter identification when unexpected noises corrupt the current and voltage measurements. SOC and capacity decay can also be estimated accurately in real-time without requiring additional open-circuit cells. |
---|