Geopolymer, calcium aluminate, and Portland cement-based mortars : comparing degradation using acetic acid

In this paper, we comparitvley studied acetic acid attacks on geopolymer (GP-M), calcium aluminate (CAC-M), and Portland cement (PC-M)-based mortars. Consequent formations of deteriorated or transition layers surrounding the unaltered core material was classified in these three mortars, according to...

Full description

Saved in:
Bibliographic Details
Main Authors: Ukrainczyk, Neven, Muthu, Murugan, Vogt, Oliver, Koenders, Eddie
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/141951
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this paper, we comparitvley studied acetic acid attacks on geopolymer (GP-M), calcium aluminate (CAC-M), and Portland cement (PC-M)-based mortars. Consequent formations of deteriorated or transition layers surrounding the unaltered core material was classified in these three mortars, according to different degradation levels depending on what binder type was involved. Apart from mass loss, hardness, and deterioration depth, their microstructural alterations were analyzed using test methods such as scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), mercury intrusion porosimetry (MIP), powder X-ray diffraction (XRD), and thermogravimetric analysis-differential scanning calorimeter (TGA-DSC), which showed the different mechanisms for each binder type. Elemental maps revealed the decalcification (PC-M and CAC-M) and depolymerization (GP-M) that occurred across the mortar sections. The mass loss, hardness, and porosity were the least affected for GP-M, followed by CAC-M. These results points out that geopolymer-based mortars have improved acid resistance, which can be used as a potential alternative to conventional cement concretes that have been exposed to agro-industrial environments.