Methods for dispersing carbon nanotubes for nanotechnology applications : liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control

Carbon nanotubes (CNTs) are a central part of advanced nanomaterials and are used in state-of-the-art technologies, based on their high tensile strength, excellent thermal transfer properties, low-band gaps and optimal chemical and physical stability. Carbon nanotubes are also intriguing given their...

Full description

Saved in:
Bibliographic Details
Main Authors: Gabriel, Jean-Christophe P., Manzetti, Sergio
Other Authors: Energy Research Institute @ NTU (ERI@N)
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/141970
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Carbon nanotubes (CNTs) are a central part of advanced nanomaterials and are used in state-of-the-art technologies, based on their high tensile strength, excellent thermal transfer properties, low-band gaps and optimal chemical and physical stability. Carbon nanotubes are also intriguing given their unique π-electron-rich structures, which opens a variety of possibilities for modifications and alterations of their chemical and electronic properties. In this review, a comprehensive survey of the methods of solubilization of carbon nanotubes is presented, forming the methodological foundation for synthesis and manufacturing of modified nanomaterials. The methods presented herein show that solubilized carbon nanotubes have a great potential in being applied as reactants and components for advanced solar cell technologies, nanochemical compounds in electronics and as parts in thermal transfer management. An example lies in the preservation of the aromatic chemistry in CNTs and ligation of functional groups to their surfaces, which confers CNTs with an optimal potential as tunable Schottky contacts, or as parts in nanotransistors and nano-resistances. Future nanoelectronic circuits and structures can therefore depend more and more on how carbon nanotubes are modified and functionalized, and for this, solubilization is often a critical part of their fabrication process. This review is important, is in conjecture with the latest developments in synthesis and modification of CNTs, and provides the know-how for developing new CNT-based state-of-the-art technologies, particularly with emphasis on computing, catalysis, environmental remediation as well as microelectronics.