Nanoscale modification of magnetic properties for effective domain wall pinning

Magnetic domain wall memory technology, wherein the information is stored in magnetic domains of multiple magnetic nanowires, is a potential concept proposed to store the large amount of digital data in the near future, which is generated due to the widespread use of social media and computing devic...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin, Tianli, Tan, Funan, Law, Wai Cheung, Gan, Weiliang, Soldatov, Ivan, Schäfer, Rudolf, Ma, Chuang, Liu, Xiaoxi, Lew, Wen Siang, Piramanayagam, S. N.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/141998
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Magnetic domain wall memory technology, wherein the information is stored in magnetic domains of multiple magnetic nanowires, is a potential concept proposed to store the large amount of digital data in the near future, which is generated due to the widespread use of social media and computing devices. However, one of the technological challenges which remains to be solved in domain wall memory is the controllable pinning of the domain walls at the nanometer scale. Here, we demonstrate the possibility to stabilize domain walls with nanoscale modification of magnetic properties by using thermal diffusion of elements from crossbar configuration. We have inspected and evaluated the magnetic properties of the nanowires using Kerr microscopy. The pinning field induced by Cr diffusion of our Ni80Fe20 nanowire was estimated to be about 8 kA/m as determined from minor loop (magnetoresistance vs. magnetic field) measurements. The proposed concept can potentially be used in future domain wall memory applications.