Acoustic source localization in strong reverberant environment by parametric Bayesian dictionary learning
Sparse representation techniques have become increasingly promising for localizing the sound source in reverberant environment, where the multipath channel effects can be accurately characterized by the image model. In this paper, a dictionary is constructed by discretizing the inner space of the en...
محفوظ في:
المؤلفون الرئيسيون: | Wang, Lu, Liu, Yanshan, Zhao, Lifan, Wang, Qiang, Zeng, Xiangyang, Chen, Kean |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/142004 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Alternative to extended block sparse Bayesian learning and its relation to pattern-coupled sparse Bayesian learning
بواسطة: Wang, Lu, وآخرون
منشور في: (2020) -
Structured Bayesian learning for recovery of clustered sparse signal
بواسطة: Wang, Lu, وآخرون
منشور في: (2022) -
Efficient convex optimization for energy-based acoustic sensor self-localization and source localization in sensor networks
بواسطة: Li, Shuangquan, وآخرون
منشور في: (2018) -
Sparse Sequential Generalization of K-means for dictionary training on noisy signals
بواسطة: Sahoo, Sujit Kumar, وآخرون
منشور في: (2017) -
Multisource DOA estimation in a reverberant environment using a single acoustic vector sensor
بواسطة: Wu, Kai, وآخرون
منشور في: (2020)