Insights into the solvation of vanadium ions in the vanadium redox flow battery electrolyte using molecular dynamics and metadynamics

The interaction of vanadium ions (V2+, V3+, VO2+ and VO2+) with counter ions in the condensed-phase vanadium redox flow battery (VRFB) system is investigated using force-field based molecular dynamics (MD), coupled with well-tempered metadynamics (WT-MetaD). In the conventional VRFB electrolyte, (i)...

全面介紹

Saved in:
書目詳細資料
Main Authors: Gupta, Sukriti, Lim, Tuti Mariana, Mushrif, Samir Hemant
其他作者: School of Chemical and Biomedical Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/142064
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:The interaction of vanadium ions (V2+, V3+, VO2+ and VO2+) with counter ions in the condensed-phase vanadium redox flow battery (VRFB) system is investigated using force-field based molecular dynamics (MD), coupled with well-tempered metadynamics (WT-MetaD). In the conventional VRFB electrolyte, (i) bisulphate ions are found relatively less stable in the first solvation shell of vanadium ions than in the bulk, and (ii) the free energy of sulphate ions in the first solvation shell of vanadium ions is marginally lower than that in the bulk. Thus, significant proportion of vanadium ions in the conventional VRFB will have an undisturbed water coordination sphere. The presence of additives like hydrochloric acid and phosphate salts introduces chloride and dihydrogen phosphate ions into the electrolyte. These counter ions are found to be significantly more stable in the first solvation shell of vanadium ions, thereby modifying their local solvation structure by replacing water molecules. The activation free energy barriers for the diffusion of all counter ions into the first solvation shell of vanadium ions can be overcome at room temperature. We believe that the MD + WT-MetaD tool, as presented here, can be used to screen and select potential additives for enhancing the solubility of vanadium ions in VRFB.