Splitting into degrees with low computational strength

We investigate the extent to which a c.e. degree can be split into two smaller c.e. degrees which are computationally weak. In contrast to a result of Bickford and Mills that 0′ can be split into two superlow c.e. degrees, we construct a SJT-hard c.e. degree which is not the join of two superlow c.e...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Downey, Rod, Ng, Keng Meng
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2020
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/142074
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:We investigate the extent to which a c.e. degree can be split into two smaller c.e. degrees which are computationally weak. In contrast to a result of Bickford and Mills that 0′ can be split into two superlow c.e. degrees, we construct a SJT-hard c.e. degree which is not the join of two superlow c.e. degrees. We also prove that every high c.e. degree is the join of two array computable c.e. degrees, and that not every high2 c.e. degree can be split in this way. Finally we extend a result of Downey, Jockusch and Stob by showing that no totally ω-c.a. wtt-degree can be cupped to the complete wtt-degree.