Cyclotron motion without magnetic field

Non-trivial Bloch band overlaps endow rich phenomena to a wide variety of quantum materials. The most prominent example is a transverse current in the absence of a magnetic field (i.e. the anomalous Hall effect). Here we show that, in addition to a dc Hall effect, anomalous Hall materials possess ci...

全面介紹

Saved in:
書目詳細資料
Main Authors: Hasdeo, Eddwi Hesky, Frenzel, Alex James, Song, Justin Chien Wen
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/142125
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Non-trivial Bloch band overlaps endow rich phenomena to a wide variety of quantum materials. The most prominent example is a transverse current in the absence of a magnetic field (i.e. the anomalous Hall effect). Here we show that, in addition to a dc Hall effect, anomalous Hall materials possess circulating currents and cyclotron motion without magnetic field. These are generated from the intricate wavefunction dynamics within the unit cell. Curiously, anomalous cyclotron motion exhibits an intrinsic decay in time (even in pristine materials) displaying a characteristic power law decay. This reveals an intrinsic dephasing similar to that of inhomogeneous broadening of spins. Circulating currents can manifest as the emission of circularly polarized light pulses in response to an incident linearly polarized (pulsed) electric field, and provide a direct means of interrogating a type of Zitterbewegung of quantum materials with broken time reversal symmetry.