Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads

This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased A...

Full description

Saved in:
Bibliographic Details
Main Authors: Lewpiriyawong, Nuttawut, Xu, Guolin, Yang, Chun
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/142203
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells.