Screen content image quality assessment using multi-scale difference of Gaussian

In this paper, a novel image quality assessment (IQA) model for the screen content images (SCIs) is proposed by using multi-scale difference of Gaussian (MDOG). Motivated by the observation that the human visual system (HVS) is sensitive to the edges while the image details can be better explored in...

全面介紹

Saved in:
書目詳細資料
Main Authors: Fu, Ying, Zeng, Huanqiang, Ma, Lin, Ni, Zhangkai, Zhu, Jianqing, Ma, Kai-Kuang
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/142205
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this paper, a novel image quality assessment (IQA) model for the screen content images (SCIs) is proposed by using multi-scale difference of Gaussian (MDOG). Motivated by the observation that the human visual system (HVS) is sensitive to the edges while the image details can be better explored in different scales, the proposed model exploits MDOG to effectively characterize the edge information of the reference and distorted SCIs at two different scales, respectively. Then, the degree of edge similarity is measured in terms of the smaller-scale edge map. Finally, the edge strength computed based on the larger-scale edge map is used as the weighting factor to generate the final SCI quality score. Experimental results have shown that the proposed IQA model for the SCIs produces high consistency with human perception of the SCI quality and outperforms the state-of-the-art quality models.