A malicious behavior awareness and defense countermeasure based on LoRaWAN protocol
Low power wide area network (LoRaWAN) protocol has been widely used in various fields. With its rapid development, security issues about the awareness and defense against malicious events in the Internet of Things must be taken seriously. Eavesdroppers can exploit the shortcomings of the specificati...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/142217 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Low power wide area network (LoRaWAN) protocol has been widely used in various fields. With its rapid development, security issues about the awareness and defense against malicious events in the Internet of Things must be taken seriously. Eavesdroppers can exploit the shortcomings of the specification and the limited consumption performance of devices to carry out security attacks such as replay attacks. In the process of the over-the-air-activation (OTAA) for LoRa nodes, attackers can modify the data because the data is transmitted in plain text. If the user's root key is leaked, the wireless sensor network will not be able to prevent malicious nodes from joining the network. To solve this security flaw in LoRaWAN, we propose a countermeasure called Secure-Packet-Transmission scheme (SPT) which works based on the LoRaWAN standard v1.1 to prevent replay attacks when an attacker has obtained the root key. The proposed scheme redefines the format of join-request packet, add the new One Time Password (OTP) encrypted method and changes the transmission strategy in OTAA between LoRa nodes and network server. The security evaluation by using the Burrows-Abadi-Needham logic (BAN Logic) and the Scyther shows that the security goal can be achieved. This paper also conducts extensive experiments by simulations and a testbed to perform feasibility and performance analysis. All results demonstrate that SPT is lightweight, efficient and able to defend against malicious behavior. |
---|