Reduced-reference quality assessment of screen content images

The screen content images (SCIs) quality influences the user experience and the interactive performance of remote computing systems. With numerous approaches proposed to evaluate the quality of natural images, much less work has been dedicated to reduced-reference image quality assessment (RR-IQA) o...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Shiqi, Gu, Ke, Zhang, Xinfeng, Lin, Weisi, Ma, Siwei, Gao, Wen
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/142238
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The screen content images (SCIs) quality influences the user experience and the interactive performance of remote computing systems. With numerous approaches proposed to evaluate the quality of natural images, much less work has been dedicated to reduced-reference image quality assessment (RR-IQA) of SCIs. Here, we propose an RR-IQA method from the perspective of SCI visual perception. In particular, the quality of the distorted SCI is evaluated by comparing a set of extracted statistical features that consider both primary visual information and unpredictable uncertainty. A unique property that differentiates the proposed method from previous RR-IQA methods for natural images is the consideration of behaviors when human subjects view the screen content, which motivates us to establish the perceptual model according to the distinct properties of SCIs. Validations based on the screen content IQA database show that the proposed algorithm provides accurate predictions across a wide range of SCI distortions with negligible transmission overhead.