Thermal conductivity characterization of three dimensional carbon nanotube network using freestanding sensor-based 3ω technique

A novel three-dimensional (3D) carbon nanotube (CNT) network, composed of vertically aligned CNT array (primary CNT) bridged with randomly oriented secondary CNT, is synthesized in this work. We report the first data for the thermal properties of this new structure using freestanding sensor-based 3ω...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kong, Qinyu, Qiu, Lin, Lim, Yu Dian, Tan, Chong Wei, Liang, Kun, Lu, Congxiang, Tay, Beng Kang
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/142324
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:A novel three-dimensional (3D) carbon nanotube (CNT) network, composed of vertically aligned CNT array (primary CNT) bridged with randomly oriented secondary CNT, is synthesized in this work. We report the first data for the thermal properties of this new structure using freestanding sensor-based 3ω technique. Introducing freestanding sensor to conventional 3ω system enables the nondestructive characterization for samples with rough surfaces. The thermal conductivities of CNT films, as well as the contact resistance between the sensor and sample surfaces, are extracted numerically by a finite-element thermal model. The thermal conductivities of 3D CNT network under different array densities range from 9.3 to 19.8 W/mK. It is found that at lower CNT array density of 5.6 × 108/cm2, the growth of secondary CNT enhances the thermal conductivity of primary CNT array by 55.9%. This significant improvement in thermal conductivity can be attributed to the additional thermal pathway provided by the secondary CNTs in the primary CNT forest. However as the density of primary CNT array increases beyond 7.2 × 108/cm2, the growth of secondary CNTs on primary CNT forest reduces its thermal conductivity. This reduction in thermal conductivity can possibly be caused by the excessive thermal resistance from the CNT-CNT connection points within 3D CNT network.