Multifunctional glyco‐nanosheets to eradicate drug‐resistant bacteria on wounds

Bacterial infection is becoming increasingly lethal with the emergence of antimicrobial resistance, and wounds plagued by such infection are notoriously difficult to heal. Here, the first use of galactose‐black phosphorus nanosheets, (Gal‐BP NSs) as a delivery platform for synergistic antibiotic (ka...

Full description

Saved in:
Bibliographic Details
Main Authors: Guo, Zhong, He, Jing-Xi, Mahadevegowda, Surendra Hittanahalli, Kho, Shu Hui, Chan-Park, Mary B., Liu, Xue-Wei
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/142368
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Bacterial infection is becoming increasingly lethal with the emergence of antimicrobial resistance, and wounds plagued by such infection are notoriously difficult to heal. Here, the first use of galactose‐black phosphorus nanosheets, (Gal‐BP NSs) as a delivery platform for synergistic antibiotic (kanamycin, Kana) and photothermal treatments against the Gram‐negative microbial strain, Pseudomonas aeruginosa PAO1 (PAO1) is reported. Gal‐BP NSs@Kana can actively target PAO1 and release kanamycin into the bacterial cytoplasm upon near‐infrared laser irradiation. This strategy kills most of the PAO1 through a simultaneous burst of intracellular kanamycin release and photothermal treatment. Comparable antibacterial activities of Gal‐BP NSs@Kana are observed within in vivo mouse models at their wound sites. In addition, this platform accelerates wound healing from PAO1 infection via promotion of neoangiogenesis and collagen production at the wound sites. This work demonstrates the material properties of Gal‐BP NS in fighting bacterial infections and in the treatment of wound healing.