Ball prolate spheroidal wave functions in arbitrary dimensions

In this paper, we introduce the prolate spheroidal wave functions (PSWFs) of real order α>−1 on the unit ball in arbitrary dimension, termed as ball PSWFs. They are eigenfunctions of both an integral operator, and a Sturm–Liouville differential operator. Different from existing works on multi-dim...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Jing, Li, Huiyuan, Wang, Li-Lian, Zhang, Zhimin
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/142377
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this paper, we introduce the prolate spheroidal wave functions (PSWFs) of real order α>−1 on the unit ball in arbitrary dimension, termed as ball PSWFs. They are eigenfunctions of both an integral operator, and a Sturm–Liouville differential operator. Different from existing works on multi-dimensional PSWFs, the ball PSWFs are defined as a generalization of orthogonal ball polynomials in primitive variables with a tuning parameter c>0, through a “perturbation” of the Sturm–Liouville equation of the ball polynomials. From this perspective, we can explore some interesting intrinsic connections between the ball PSWFs and the finite Fourier and Hankel transforms. We provide an efficient and accurate algorithm for computing the ball PSWFs and the associated eigenvalues, and present various numerical results to illustrate the efficiency of the method. Under this uniform framework, we can recover the existing PSWFs by suitable variable substitutions.