Synthesis of high volumetric capacity graphene oxide-supported tellurantimony Na- and Li-ion battery anodes by hydrogen peroxide sol gel processing
High-charge-capacity sodium-ion battery anodes made of Sb2Te3@reduced graphene oxide are reported for the first time. Uniform nano-coating of graphene oxide is carried out from common sol of peroxotellurate and peroxoantimonate under room temperature processing. Reduction by hydrazine under glycerol...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/142548 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | High-charge-capacity sodium-ion battery anodes made of Sb2Te3@reduced graphene oxide are reported for the first time. Uniform nano-coating of graphene oxide is carried out from common sol of peroxotellurate and peroxoantimonate under room temperature processing. Reduction by hydrazine under glycerol reflux yields Sb2Te3@reduced graphene oxide. The electrodes exhibit exceptionally high volumetric charge capacity, above 2300mAhcm-3 at 100mAg-1 current density, showing very good rate capabilities and retaining 60% of this capacity even at 2000mAg-1. A comparison of sodiation and lithiation shows that lithiation exhibits better volumetric charge capacity, but surprisingly only marginally better relative rate capability retention at 2000mAg-1. Tellurium-based electrodes are attractive due to the high volumetric charge capacity of Te, its very high electric conductivity, and the low relative expansion upon lithiation/sodiation. |
---|