Sublinear-time algorithms for compressive phase retrieval

In the compressive phase retrieval problem, the goal is to reconstruct a sparse or approximately k-sparse vector x ∈ R n given access to y = |Φ x |, where |v| denotes the vector obtained from taking the absolute value of v ∈ R n coordinatewise. In this paper we present sublinear-time algorithms for...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Yi, Nakos, Vasileios
Other Authors: School of Physical and Mathematical Sciences
Format: Conference or Workshop Item
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/142571
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In the compressive phase retrieval problem, the goal is to reconstruct a sparse or approximately k-sparse vector x ∈ R n given access to y = |Φ x |, where |v| denotes the vector obtained from taking the absolute value of v ∈ R n coordinatewise. In this paper we present sublinear-time algorithms for different variants of the compressive phase retrieval problem which are akin to the variants of the classical compressive sensing problem considered in theoretical computer science. Our algorithms use pure combinatorial techniques and achieve almost optimal number of measurements.