Sublinear-time algorithms for compressive phase retrieval

In the compressive phase retrieval problem, the goal is to reconstruct a sparse or approximately k-sparse vector x ∈ R n given access to y = |Φ x |, where |v| denotes the vector obtained from taking the absolute value of v ∈ R n coordinatewise. In this paper we present sublinear-time algorithms for...

全面介紹

Saved in:
書目詳細資料
Main Authors: Li, Yi, Nakos, Vasileios
其他作者: School of Physical and Mathematical Sciences
格式: Conference or Workshop Item
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/142571
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In the compressive phase retrieval problem, the goal is to reconstruct a sparse or approximately k-sparse vector x ∈ R n given access to y = |Φ x |, where |v| denotes the vector obtained from taking the absolute value of v ∈ R n coordinatewise. In this paper we present sublinear-time algorithms for different variants of the compressive phase retrieval problem which are akin to the variants of the classical compressive sensing problem considered in theoretical computer science. Our algorithms use pure combinatorial techniques and achieve almost optimal number of measurements.