Three-dimensional hierarchical and superhydrophobic graphene gas sensor with good immunity to humidity

Superhydrophobic reduced graphene oxide (RGO) with unique 3D hierarchical structures is synthesized by exploiting one-step spark plasma sintering (SPS) within 60 s for high-performance NO2 detection. The effective removal of oxygenated groups and generation of 3D hierarchical structures in SPS rende...

全面介紹

Saved in:
書目詳細資料
Main Authors: Wu, Jin, Tao, Kai, Miao, Jianmin, Norford, Leslie Keith
其他作者: School of Mechanical and Aerospace Engineering
格式: Conference or Workshop Item
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/142664
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Superhydrophobic reduced graphene oxide (RGO) with unique 3D hierarchical structures is synthesized by exploiting one-step spark plasma sintering (SPS) within 60 s for high-performance NO2 detection. The effective removal of oxygenated groups and generation of 3D hierarchical structures in SPS render the RGO superhydrophobic. The superhydrophobicity makes the fabricated RGO sensor exceptionally immune to high relative humidity (RH). Specifically, the RGO sensor exhibits a response degradation less than 5.5% to 1 ppm NO2 when the RH increases from 0% to 70%. Importantly, an integrated microheater array is employed to remarkably activate the RGO-based NO2 sensor, boosting the sensitivity. Consequently, the NO2 sensor displays a high sensitivity (25.5 ppm-1) and an extremely low limit of detection (9.1 ppb). The boosted NO2 sensing performance is attributed to superhydrophobicity, 3D hierarchical structures with high specific surface area (850 m2/g), abundant defect sites and thermal activation with microheaters.