Crystal chemistry of vanadium-bearing ellestadite waste forms
Vanadate ellestadites Ca10(SiO4) x(VO4)6-2 x(SO4) xCl2, serving as prototype crystalline matrices for the fixation of pentavalent toxic metals (V, Cr, As), were synthesized and characterized by powder X-ray and neutron diffraction (PXRD and PND), electron probe microanalysis (EPMA), Fourier transfor...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/142691 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Vanadate ellestadites Ca10(SiO4) x(VO4)6-2 x(SO4) xCl2, serving as prototype crystalline matrices for the fixation of pentavalent toxic metals (V, Cr, As), were synthesized and characterized by powder X-ray and neutron diffraction (PXRD and PND), electron probe microanalysis (EPMA), Fourier transform infrared spectroscopy (FTIR), and solid-state nuclear magnetic resonance (SS-NMR). The ellestadites 0.19 < x < 3 adopt the P63/ m structure, while the vanadate endmember Ca10(VO4)6Cl2 is triclinic with space group P1̅. A miscibility gap exists for 0.77 < x < 2.44. The deficiency of Cl in the structure leads to short-range disorder in the tunnel. Toxicity characteristic leaching testing (TCLP) showed the incorporation of vanadium increases ellestadite solubility, and defined a waste loading limit that should not exceed 25 atom % V to ensure small release levels. |
---|