Energy optimal wireless data transmission for wearable devices : a compression approach

Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data t...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Wei, Fan, Rui, Wen, Yonggang, Liu, Fang
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/142718
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Wearable devices are designed to have a small size and be lightweight. Consequently, the battery life is constrained and becomes a crucial limitation. In this paper, we use both data compression and wireless transmission speed control to minimize the energy consumption of wearable devices for data transmission, subject to a deadline constraint. We consider both an off-line setting where future channel gains are known ahead of time and a stochastic setting where channel gains change stochastically according to a Markov process. For the first case, we present an efficient (1+ϵ) approximation algorithm for an arbitrarily small ϵ, while in the latter case we give a stochastic algorithm to minimize the total expected energy use. We also conduct experimental studies on the proposed algorithms and show that the stochastic algorithm, despite not knowing future channel gains, closely approximates the performance of the nearly optimal off-line solution with less than 0.1% difference in energy consumption on an average. We also compared the stochastic algorithm with several other practical algorithms and showed that our algorithm achieves significant improvements in the overall energy use.