Bootstrapping the performance of webly supervised semantic segmentation

Fully supervised methods for semantic segmentation require pixel-level class masks to train, the creation of which is expensive in terms of manual labour and time. In this work, we focus on weak supervision, developing a method for training a high-quality pixel-level classifier for semantic segmenta...

Full description

Saved in:
Bibliographic Details
Main Authors: Shen, Tong, Lin, Guosheng, Shen, Chunhua, Reid, Ian
Other Authors: School of Computer Science and Engineering
Format: Conference or Workshop Item
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/142802
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Fully supervised methods for semantic segmentation require pixel-level class masks to train, the creation of which is expensive in terms of manual labour and time. In this work, we focus on weak supervision, developing a method for training a high-quality pixel-level classifier for semantic segmentation, using only image-level class labels as the provided ground-truth. Our method is formulated as a two-stage approach in which we first aim to create accurate pixel-level masks for the training images via a bootstrapping process, and then use these now-accurately segmented images as a proxy ground-truth in a more standard supervised setting. The key driver for our work is that in the target dataset we typically have reliable ground-truth image-level labels, while data crawled from the web may have unreliable labels, but can be filtered to comprise only easy images to segment, therefore having reliable boundaries. These two forms of information are complementary and we use this observation to build a novel bi-directional transfer learning framework. This framework transfers knowledge between two domains, target domain and web domain, bootstrapping the performance of weakly supervised semantic segmentation. Conducting experiments on the popular benchmark dataset PASCAL VOC 2012 based on both a VGG16 network and on ResNet50, we reach state-of-the-art performance with scores of 60.2% IoU and 63.9% IoU respectively.