Target displacements during eye blinks trigger automatic recalibration of gaze direction
Eye blinks cause disruptions to visual input and are accompanied by rotations of the eyeball [1]. Like every motor action, these eye movements are subject to noise and introduce instabilities in gaze direction across blinks [2]. Accumulating errors across repeated blinks would be debilitating for vi...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/142916 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-142916 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1429162020-07-09T02:19:02Z Target displacements during eye blinks trigger automatic recalibration of gaze direction Maus, Gerrit W. Duyck, Marianne Lisi, Matteo Collins, Thérèse Whitney, David Cavanagh, Patrick School of Social Sciences Social sciences::Psychology Eye Blinks Eye Movements Eye blinks cause disruptions to visual input and are accompanied by rotations of the eyeball [1]. Like every motor action, these eye movements are subject to noise and introduce instabilities in gaze direction across blinks [2]. Accumulating errors across repeated blinks would be debilitating for visual performance. Here, we show that the oculomotor system constantly recalibrates gaze direction during blinks to counteract gaze instability. Observers were instructed to fixate a visual target while gaze direction was recorded and blinks were detected in real time. With every spontaneous blink-while eyelids were closed-the target was displaced laterally by 0.5° (or 1.0°). Most observers reported being unaware of displacements during blinks. After adapting for ∼35 blinks, gaze positions after blinks showed significant biases toward the new target position. Automatic eye movements accompanied each blink, and an aftereffect persisted for a few blinks after target displacements were eliminated. No adaptive gaze shift occurred when blinks were simulated with shutter glasses at random time points or actively triggered by observers, or when target displacements were masked by a distracting stimulus. Visual signals during blinks are suppressed by inhibitory mechanisms [3-6], so that small changes across blinks are generally not noticed [7, 8]. Additionally, target displacements during blinks can trigger automatic gaze recalibration, similar to the well-known saccadic adaptation effect [9-11]. This novel mechanism might be specific to the maintenance of gaze direction across blinks or might depend on a more general oculomotor recalibration mechanism adapting gaze position during intrinsically generated disruptions to visual input. Accepted version 2020-07-09T02:11:20Z 2020-07-09T02:11:20Z 2017 Journal Article Maus, G. W., Duyck, M., Lisi, M., Collins, T., Whitney, D., & Cavanagh, P. (2017). Target displacements during eye blinks trigger automatic recalibration of gaze direction. Current Biology, 27(3), 445-450. doi:10.1016/j.cub.2016.12.029 0960-9822 https://hdl.handle.net/10356/142916 10.1016/j.cub.2016.12.029 28111150 2-s2.0-85009732795 3 27 445 450 en Current Biology © 2016 Elsevier Ltd. All rights reserved. This paper was published in Current Biology and is made available with permission of Elsevier Ltd. application/pdf application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
Social sciences::Psychology Eye Blinks Eye Movements |
spellingShingle |
Social sciences::Psychology Eye Blinks Eye Movements Maus, Gerrit W. Duyck, Marianne Lisi, Matteo Collins, Thérèse Whitney, David Cavanagh, Patrick Target displacements during eye blinks trigger automatic recalibration of gaze direction |
description |
Eye blinks cause disruptions to visual input and are accompanied by rotations of the eyeball [1]. Like every motor action, these eye movements are subject to noise and introduce instabilities in gaze direction across blinks [2]. Accumulating errors across repeated blinks would be debilitating for visual performance. Here, we show that the oculomotor system constantly recalibrates gaze direction during blinks to counteract gaze instability. Observers were instructed to fixate a visual target while gaze direction was recorded and blinks were detected in real time. With every spontaneous blink-while eyelids were closed-the target was displaced laterally by 0.5° (or 1.0°). Most observers reported being unaware of displacements during blinks. After adapting for ∼35 blinks, gaze positions after blinks showed significant biases toward the new target position. Automatic eye movements accompanied each blink, and an aftereffect persisted for a few blinks after target displacements were eliminated. No adaptive gaze shift occurred when blinks were simulated with shutter glasses at random time points or actively triggered by observers, or when target displacements were masked by a distracting stimulus. Visual signals during blinks are suppressed by inhibitory mechanisms [3-6], so that small changes across blinks are generally not noticed [7, 8]. Additionally, target displacements during blinks can trigger automatic gaze recalibration, similar to the well-known saccadic adaptation effect [9-11]. This novel mechanism might be specific to the maintenance of gaze direction across blinks or might depend on a more general oculomotor recalibration mechanism adapting gaze position during intrinsically generated disruptions to visual input. |
author2 |
School of Social Sciences |
author_facet |
School of Social Sciences Maus, Gerrit W. Duyck, Marianne Lisi, Matteo Collins, Thérèse Whitney, David Cavanagh, Patrick |
format |
Article |
author |
Maus, Gerrit W. Duyck, Marianne Lisi, Matteo Collins, Thérèse Whitney, David Cavanagh, Patrick |
author_sort |
Maus, Gerrit W. |
title |
Target displacements during eye blinks trigger automatic recalibration of gaze direction |
title_short |
Target displacements during eye blinks trigger automatic recalibration of gaze direction |
title_full |
Target displacements during eye blinks trigger automatic recalibration of gaze direction |
title_fullStr |
Target displacements during eye blinks trigger automatic recalibration of gaze direction |
title_full_unstemmed |
Target displacements during eye blinks trigger automatic recalibration of gaze direction |
title_sort |
target displacements during eye blinks trigger automatic recalibration of gaze direction |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/142916 |
_version_ |
1681058211564617728 |