Lateral cavity enabled Fabry-Perot microlasers from all-inorganic perovskites

Microlasers play an important role in the development of photonics and optoelectronics. As the rising star in the semiconductor family, all-inorganic lead halide perovskites (ILHPs) have been recognized as promising optical gain and lasing media. However, until now, achieving duplicable and single-m...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Ziming, Ren, Yinjuan, Wang, Yue, Gu, Zhiyuan, Li, Xiaoming, Sun, Handong
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/142956
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Microlasers play an important role in the development of photonics and optoelectronics. As the rising star in the semiconductor family, all-inorganic lead halide perovskites (ILHPs) have been recognized as promising optical gain and lasing media. However, until now, achieving duplicable and single-mode microlasers remains a taunting challenge. Herein, we fabricated rectangular-shaped ILHP microsheets by the chemical vapor deposition method. The single-crystalline nature and the atomically smooth surfaces of the sample enable the achievement of lateral-cavity Fabry-Pérot (F-P) microlasers. Specifically, the lasing characteristics including the wavelength, mode spacing, and Q-factors can be well-reproduced along the axial direction of the individual microsheet. By regulating the width of the ILHP microsheet, the desirable single-longitudinal mode F-P microlaser was eventually achieved. Our results provide an enabling coherent light source for optics-related applications.