Lateral cavity enabled Fabry-Perot microlasers from all-inorganic perovskites
Microlasers play an important role in the development of photonics and optoelectronics. As the rising star in the semiconductor family, all-inorganic lead halide perovskites (ILHPs) have been recognized as promising optical gain and lasing media. However, until now, achieving duplicable and single-m...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/142956 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Microlasers play an important role in the development of photonics and optoelectronics. As the rising star in the semiconductor family, all-inorganic lead halide perovskites (ILHPs) have been recognized as promising optical gain and lasing media. However, until now, achieving duplicable and single-mode microlasers remains a taunting challenge. Herein, we fabricated rectangular-shaped ILHP microsheets by the chemical vapor deposition method. The single-crystalline nature and the atomically smooth surfaces of the sample enable the achievement of lateral-cavity Fabry-Pérot (F-P) microlasers. Specifically, the lasing characteristics including the wavelength, mode spacing, and Q-factors can be well-reproduced along the axial direction of the individual microsheet. By regulating the width of the ILHP microsheet, the desirable single-longitudinal mode F-P microlaser was eventually achieved. Our results provide an enabling coherent light source for optics-related applications. |
---|