Additive manufacturing of austenitic alloys with high strength and high ductility by selective laser melting

Selective laser melting (SLM) is a popular powder bed fusion technique used for manufacturing of metal parts. Due to its high-energy laser heat source, SLM process creates a high thermal gradient and fast cooling rate. As a result, it tends to generate a fine microstructure with high dislocation den...

全面介紹

Saved in:
書目詳細資料
主要作者: Sun, Zhongji
其他作者: Tor Shu Beng
格式: Thesis-Doctor of Philosophy
語言:English
出版: Nanyang Technological University 2020
主題:
在線閱讀:https://hdl.handle.net/10356/143022
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Selective laser melting (SLM) is a popular powder bed fusion technique used for manufacturing of metal parts. Due to its high-energy laser heat source, SLM process creates a high thermal gradient and fast cooling rate. As a result, it tends to generate a fine microstructure with high dislocation densities and small grain size. Since it’s a layer-by-layer manufacturing process, there is a potential for microstructural control within a single build. This study thus aims to understand the mechanisms of microstructural control for SLM process. Specifically, it aims to achieve a desirable microstructure with improved the mechanical properties. Two types of alloys with austenitic crystallographic structures were fabricated in the current work, namely stainless steel 316L (SS316L) and high-entropy alloy AlxCoCrFeNi. It is found that with proper parameter optimization, the microstructure of SS316L could be successfully manipulated to enhance both strength and ductility concurrently as compared to the base material. As for AlxCoCrFeNi, hot cracking was found to occur in CoCrFeNi, proper composition adjustment is shown to successfully minimize the hot crack density and improve its mechanical performance.