Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3

Atomically thin magnets are the key element to build up spintronics based on two-dimensional materials. The surface nature of two-dimensional ferromagnet opens up opportunities to improve the device performance efficiently. Here, we report the intrinsic ferromagnetism in atomically thin monolayer Cr...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Zhaowei, Shang, Jingzhi, Jiang, Chongyun, Abdullah Rasmita, Gao, Weibo, Yu, Ting
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/143047
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Atomically thin magnets are the key element to build up spintronics based on two-dimensional materials. The surface nature of two-dimensional ferromagnet opens up opportunities to improve the device performance efficiently. Here, we report the intrinsic ferromagnetism in atomically thin monolayer CrBr3, directly probed by polarization resolved magneto-photoluminescence. The spontaneous magnetization persists in monolayer CrBr3 with a Curie temperature of 34 K. The development of magnons by the thermal excitation is in line with the spin-wave theory. We attribute the layer-number-dependent hysteresis loops in thick layers to the magnetic domain structures. As a stable monolayer material in air, CrBr3 provides a convenient platform for fundamental physics and pushes the potential applications of the two-dimensional ferromagnetism.