In-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization
This study reports an integrated sludge treatment and resource recovery system that consisted of a sludge pre-treatment reactor and a microbial fuel cell (MFC) aiming for simultaneous energy and nutrients recovery. Nearly one year performance of the system in terms of power generation, nutrients rem...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/143193 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-143193 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1431932021-02-05T05:48:21Z In-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization Wu, Dan Sun, Faqian Chua, Desmond Feng Jun Lu, Dan Stuckey, David Campbell Zhou, Yan School of Civil and Environmental Engineering Interdisciplinary Graduate School (IGS) Advanced Environmental Biotechnology Centre Nanyang Environment and Water Research Institute Engineering::Environmental engineering Sewage Sludge Fermented Liquor This study reports an integrated sludge treatment and resource recovery system that consisted of a sludge pre-treatment reactor and a microbial fuel cell (MFC) aiming for simultaneous energy and nutrients recovery. Nearly one year performance of the system in terms of power generation, nutrients removal efficiency, key dissolved organic matters (DOMs) transformation and microbial community change were investigated and reported. Volatile fatty acids (VFAs) and other soluble organic matters was produced from fermentation of waste activated sludge under thermophilic alkaline condition. Fermented liquor (FL) was used as feed for MFC, which produced maximum voltage of 0.477 V and power density of 8.07 W m−3. Humic-like substances (HSs) were removed by 48.27% within a 5 days cycle. The analysis on DOMs transformation revealed both high and low molecular weight protein and polysaccharides, and HSs were converted and contributed to power generation. Some unknown compounds in FL could enhance the power generation by 5.5 times more compared to pure VFA as feed. 90.59% of ammonium was removed with majority concentrated in the cathode. Phosphorus was removed and stored in the biomass in the form of polyphosphate (poly-P). Microbial community analysis indicated that Exoelectrogenic was the dominant community while Aquamicrobium, Nitrosomonas, Achromobacter and Rhodocyclaceae were also enriched in the anode. This work demonstrates that the integrated system can successfully remove and recover nutrients and generate power simultaneously with long-term stable performance. Nanyang Technological University Accepted version The authors are grateful for the financial support provided by the Advanced Environmental Biotechnology Centre (AEBC) of Nanyang Technological University, the Research Fund for the Doctoral Program of Singapore and Interdisciplinary Graduate School of Nanyang Technological University. 2020-08-12T01:18:14Z 2020-08-12T01:18:14Z 2019 Journal Article Wu, D., Sun, F., Chua, D. F. J., Lu, D., Stuckey, D. C., & Zhou, Y. (2019). In-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization. Chemical Engineering Journal, 361, 1207-1214. doi:10.1016/j.cej.2019.01.001 1385-8947 https://hdl.handle.net/10356/143193 10.1016/j.cej.2019.01.001 2-s2.0-85059424241 361 1207 1214 en Chemical Engineering Journal © 2019 Elsevier B.V. All rights reserved. This paper was published in Chemical Engineering Journal and is made available with permission of Elsevier B.V. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Environmental engineering Sewage Sludge Fermented Liquor |
spellingShingle |
Engineering::Environmental engineering Sewage Sludge Fermented Liquor Wu, Dan Sun, Faqian Chua, Desmond Feng Jun Lu, Dan Stuckey, David Campbell Zhou, Yan In-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization |
description |
This study reports an integrated sludge treatment and resource recovery system that consisted of a sludge pre-treatment reactor and a microbial fuel cell (MFC) aiming for simultaneous energy and nutrients recovery. Nearly one year performance of the system in terms of power generation, nutrients removal efficiency, key dissolved organic matters (DOMs) transformation and microbial community change were investigated and reported. Volatile fatty acids (VFAs) and other soluble organic matters was produced from fermentation of waste activated sludge under thermophilic alkaline condition. Fermented liquor (FL) was used as feed for MFC, which produced maximum voltage of 0.477 V and power density of 8.07 W m−3. Humic-like substances (HSs) were removed by 48.27% within a 5 days cycle. The analysis on DOMs transformation revealed both high and low molecular weight protein and polysaccharides, and HSs were converted and contributed to power generation. Some unknown compounds in FL could enhance the power generation by 5.5 times more compared to pure VFA as feed. 90.59% of ammonium was removed with majority concentrated in the cathode. Phosphorus was removed and stored in the biomass in the form of polyphosphate (poly-P). Microbial community analysis indicated that Exoelectrogenic was the dominant community while Aquamicrobium, Nitrosomonas, Achromobacter and Rhodocyclaceae were also enriched in the anode. This work demonstrates that the integrated system can successfully remove and recover nutrients and generate power simultaneously with long-term stable performance. |
author2 |
School of Civil and Environmental Engineering |
author_facet |
School of Civil and Environmental Engineering Wu, Dan Sun, Faqian Chua, Desmond Feng Jun Lu, Dan Stuckey, David Campbell Zhou, Yan |
format |
Article |
author |
Wu, Dan Sun, Faqian Chua, Desmond Feng Jun Lu, Dan Stuckey, David Campbell Zhou, Yan |
author_sort |
Wu, Dan |
title |
In-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization |
title_short |
In-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization |
title_full |
In-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization |
title_fullStr |
In-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization |
title_full_unstemmed |
In-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization |
title_sort |
in-situ power generation and nutrients recovery from waste activated sludge – long-term performance and system optimization |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/143193 |
_version_ |
1692012982368731136 |