Resilience bounds of sensing-based network clock synchronization
Recent studies exploited external periodic synchronous signals to synchronize a pair of network nodes to address a threat of delaying the communications between the nodes. However, the sensing-based synchronization may yield faults due to nonmalicious signal and sensor noises. This paper considers a...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/143213 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Recent studies exploited external periodic synchronous signals to synchronize a pair of network nodes to address a threat of delaying the communications between the nodes. However, the sensing-based synchronization may yield faults due to nonmalicious signal and sensor noises. This paper considers a system of N nodes that will fuse their peer-to-peer synchronization results to correct the faults. Our analysis gives the lower bound of the number of faults that the system can tolerate when N is up to 12. If the number of faults is no greater than the lower bound, the faults can be identified and corrected. We also prove that the system cannot tolerate more than N - 2 faults. Our results can guide the design of resilient sensing-based clock synchronization systems. |
---|