Optimal locally repairable codes via elliptic curves
Constructing locally repairable codes achieving Singleton-type bound (we call them optimal codes in this paper) is a challenging task and has attracted great attention in the last few years. Tamo and Barg first gave a breakthrough result in this topic by cleverly considering subcodes of Reed-Solomon...
محفوظ في:
المؤلفون الرئيسيون: | , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/143232 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | Constructing locally repairable codes achieving Singleton-type bound (we call them optimal codes in this paper) is a challenging task and has attracted great attention in the last few years. Tamo and Barg first gave a breakthrough result in this topic by cleverly considering subcodes of Reed-Solomon codes. Thus, q-ary optimal locally repairable codes from subcodes of Reed-Solomon codes given by Tamo and Barg have length upper bounded by q. Recently, it was shown through extension of construction by Tamo and Barg that length of q-ary optimal locally repairable codes can be q+1 by Jin et al.. Surprisingly it was shown by Barg et al. that, unlike classical MDS codes, q-ary optimal locally repairable codes could have length bigger than q+1. Thus, it becomes an interesting and challenging problem to construct q-ary optimal locally repairable codes of length bigger than q+1. In this paper, we make use of rich algebraic structures of elliptic curves to construct a family of q-ary optimal locally repairable codes of length up to q+2√(q). It turns out that locality of our codes can be as big as 23 and distance can be linear in length. |
---|