On Eisenstein series in M2k(Γ0(N)) and their applications

Let k, N ∈ N with N square-free and k > 1. We prove an orthogonal relation and use this to compute the Fourier coefficients of the Eisenstein part of any f(z) ∈ M2k(Γ0(N)) in terms of sum of divisors function. In particular, if f(z) ∈ E2k(Γ0(N)), then the computation will to yield to an expressio...

全面介紹

Saved in:
書目詳細資料
主要作者: Aygin, Zafer Selcuk
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/143236
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Let k, N ∈ N with N square-free and k > 1. We prove an orthogonal relation and use this to compute the Fourier coefficients of the Eisenstein part of any f(z) ∈ M2k(Γ0(N)) in terms of sum of divisors function. In particular, if f(z) ∈ E2k(Γ0(N)), then the computation will to yield to an expression for the Fourier coefficients of f(z). Then we apply our main theorem to give formulas for convolution sums of the divisor function to extend the result by Ramanujan, and to eta quotients which yields to formulas for number of representations of integers by certain families of quadratic forms. At last we give essential results to derive similar results for modular forms in a more general setting.