Giant modal gain coefficients in colloidal II-VI nanoplatelets

Modal gain coefficient is a key figure of merit for a laser material. Previously, net modal gain coefficients larger than a few thousand cm-1 were achieved in II-VI and III-V semiconductor gain media, but this required operation at cryogenic temperatures. In this work, using pump-fluence-dependent v...

Full description

Saved in:
Bibliographic Details
Main Authors: Guzelturk, Burak, Pelton, Matthew, Olutas, Murat, Demir, Hilmi Volkan
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/143624
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Modal gain coefficient is a key figure of merit for a laser material. Previously, net modal gain coefficients larger than a few thousand cm-1 were achieved in II-VI and III-V semiconductor gain media, but this required operation at cryogenic temperatures. In this work, using pump-fluence-dependent variable-stripe-length measurements, we show that colloidal CdSe nanoplatelets enable giant modal gain coefficients at room temperature up to 6600 cm-1 under pulsed optical excitation. Furthermore, we show that exceptional gain performance is common to the family of CdSe nanoplatelets, as shown by examining samples having different vertical thicknesses and lateral areas. Overall, colloidal II-VI nanoplatelets with superior optical gain properties are promising for a broad range of applications, including high-speed light amplification and loss compensation in plasmonic photonic circuits.