Editorial : volumes, timescales, and frequency of magmatic processes in the earth's lithosphere

Heat, mass, and fluid transfer processes related to the formation and growth of the continentalcrust along convergent and divergent plate boundaries, and the formation, modification, andrecycling of the continental crust are key research themes in the solid Earth Science community.Establishing the l...

Full description

Saved in:
Bibliographic Details
Main Authors: Pistone, Mattia, Taisne, Benoît, Dobson, Katherine J.
Other Authors: Earth Observatory of Singapore
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/143899
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Heat, mass, and fluid transfer processes related to the formation and growth of the continentalcrust along convergent and divergent plate boundaries, and the formation, modification, andrecycling of the continental crust are key research themes in the solid Earth Science community.Establishing the link between magma generation, transport,emplacement, and eruption cantherefore significantly improve our understanding of crust-forming processes associated withplate tectonics, and, particularly, help determining the architecture, and composition of theEarth’s lithosphere.One of the Earth’s characteristic processes is chemical differentiation, forming a SiO2-richcontinental crust that is continuously shaped and reworked throughout Wilson cycles. Thecontinental crust covers 41% of Earth’s surface (Cogley, 1984) and sits at higher elevation comparedto the oceanic crust that tends to be largely subducted. The SiO2-rich rocks that dominate the upperportions of Earth’s crust are unique in the Solar System (e.g.,Taylor, 1989) and are ultimately linkedto the presence of liquid water on Earth (Bowen, 1928; Campbell and Taylor, 1985). But when,where and for how long magmas are stored within the Earth’s lithosphere and how they contributeto its chemical, physical, and thermal architecture remain important challenges in geosciences.The presence of magmatic bodies in the crust have been confirmed through a wide rangeof geophysical investigations; however, the volume, geometry, mechanics, chemical signatures,and evolution of these bodies remain poorly constrained. Establishing the link between magmageneration, transport, emplacement, and eruption is therefore essential to significantly improveour understanding of crust-forming processes associated with plate tectonics, and help determinethe Earth’s lithosphere architecture, composition, and dynamics. In this cross-disciplinary ResearchTopic, contributions aim to answer such fundamental questions.