Fiber-integrated phase-change reconfigurable optical attenuator

We report on the experimental demonstration of an optical-fiber-integrated, nonvolatile transmission switching device. The operating mechanism exploits a cavity resonance spectral shift associated with an induced change in the refractive index of a high-index thin film on the polished side facet of...

Full description

Saved in:
Bibliographic Details
Main Authors: Martins, Tiago, Gholipour, Behrad, Piccinotti, Davide, MacDonald, Kevin F., Peacock, Anna C., Frazão, Orlando, Zheludev, Nikolay I.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/143921
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We report on the experimental demonstration of an optical-fiber-integrated, nonvolatile transmission switching device. The operating mechanism exploits a cavity resonance spectral shift associated with an induced change in the refractive index of a high-index thin film on the polished side facet of the fiber. In the present case, a thermally induced amorphous-crystalline structural transition in a 500 nm layer of germanium antimony telluride at a distance of 500 nm from the core-cladding interface of an SMF-28 single-mode fiber delivers resonant transmission contrast >0.5 dB/mm at 1315 nm. Contrast is a function of active layer proximity to the core, while operating wavelength is determined by layer thickness—varying thickness by a few tens of nanometers can provide for tuning over the entire near-infrared telecoms spectral range.