Pillar[5]quinone–carbon nanocomposites as high-capacity cathodes for sodium-ion batteries

New organic cathodes to replace inorganic materials for the capacity enhancement of sodium-ion batteries (SIBs) are highly desirable. In this research, we described the investigation of pillar[5]quinone (P5Q), which we determined to have a theoretical capacity of 446 mAh g-1, a value that makes it a...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiong, Wenxu, Huang, Weiwei, Zhang, Meng, Hu, Pandeng, Cui, Huamin, Zhang, Qichun
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/144064
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:New organic cathodes to replace inorganic materials for the capacity enhancement of sodium-ion batteries (SIBs) are highly desirable. In this research, we described the investigation of pillar[5]quinone (P5Q), which we determined to have a theoretical capacity of 446 mAh g-1, a value that makes it a very promising candidate as a cathode in rechargeable batteries. Inspired by this value, P5Q was encapsulated into CMK-3 to form a composite, and then integrated with sin-gle-walled carbon nanotubes (SWCNTs) to generate a film that was used as the cathode in SIBs. The as-assembled SIBs showed an initial capacity up to 418 mAh g-1and maintained 290 mAh g-1after 300 cycles at 0.1 C. Even at 1 C, the capaci-ty could still reach 201 mAh g-1.