A 3D haloplumbate framework constructed from unprecedented Lindqvist-like highly coordinated [Pb6Br25]13- nanoclusters with temperature-dependent emission

Searching novel haloplumbate building units to construct three-dimensional (3D) frameworks is very important and highly desirable because such materials would possess new physical properties and potential applications. Here, by employing tetrakis(N-imidazolemethylene)methane(TIMM) as a structure-dir...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Xinxiong, Do, Thi Thu Ha, del Águila, A. Granados, Huang, Yinjuan, Chen, Wangqiao, Xiong, Qihua, Zhang, Qichun
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/144106
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Searching novel haloplumbate building units to construct three-dimensional (3D) frameworks is very important and highly desirable because such materials would possess new physical properties and potential applications. Here, by employing tetrakis(N-imidazolemethylene)methane(TIMM) as a structure-directing agent, the first 3D haloplumbate framework constructed from unprecedented Lindqvist-like highly coordinated [Pb6 Br25 ]13- nanoclusters has been successfully prepared under hydrothermal condition, where all Pb2+ centres in [Pb6 Br25 ]13- nanoclusters adopt seven-/eight-coordinated configurations. The as-obtained material is a wide-gap semiconductor (≈3.1 eV) and can be stable up to 320 °C. More importantly, this material has been demonstrated to show temperature-dependent emission. Our results could provide a new strategy to explore novel metal-halide open-framework materials.