Core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory

To break through the bottleneck of SERS development in the surface analysis of a great variety of non-SERS active materials and atomically flat single-crystals, we invented shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in 2010 [1]. The shell-isolated nanoparticle-enhanced mode is...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Jian-Feng, Ding, Song-Yuan, Li, Chao-Yu, Shen, Shao-Xin, Huang, Ya-Ping, Zhang, Mao-Xin, Yi, Jun, Tian, Zhong-Qun
Other Authors: Asian Spectroscopy Conference 2020
Format: Conference or Workshop Item
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/144198
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-144198
record_format dspace
spelling sg-ntu-dr.10356-1441982020-10-27T01:49:40Z Core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory Li, Jian-Feng Ding, Song-Yuan Li, Chao-Yu Shen, Shao-Xin Huang, Ya-Ping Zhang, Mao-Xin Yi, Jun Tian, Zhong-Qun Asian Spectroscopy Conference 2020 Institute of Advanced Studies Science::Chemistry Molecule Spectroscopies Shell-isolated Nanoparticles To break through the bottleneck of SERS development in the surface analysis of a great variety of non-SERS active materials and atomically flat single-crystals, we invented shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in 2010 [1]. The shell-isolated nanoparticle-enhanced mode is capable of characterizing the surface water, reaction intermediate species in many important electrocatalytic or photo-electrocatalytic systems, and interfacial structures of the solid electrolyte film [2]. The strategy of using shell-isolated nanoparticles is grossly extendable to other surface spectroscopies, like surface-enhanced fluorescence spectroscopy [3], surface-enhanced second-harmonic generation [4], sum-frequency vibrational spectroscopy, and tip-enhanced spectroscopies [5], to improve the enhancement factor (up to 105) or spatial resolution (down to 10 nm). It will attract more attention if these techniques are applied to in-situ monitor the actual catalytic reaction systems, e.g., at single atoms or a single molecule. In the aspect of fundamental understanding of SHINERS, New plasmonic nanostructures and relevant instrumentation and theory for pushing sensitivity to the limit will be discussed in details [6]. Finally, we would like to explore on the radiation enhancement that cannot be easily predicted by the local field enhancement in the presence of plane-wave illumination at the Raman scattered wavelength in the case of nanoparticle-on-mirror substrate. The mismatch could be understood by the radiation enhancement of the optical antenna in the reaction near-field region instead of the far-field region [7]. Published version 2020-10-20T04:52:16Z 2020-10-20T04:52:16Z 2020 Conference Paper Li, J.-F., Ding, S.-Y., Li, C.-Y., Shen, S.-X., Huang, Y.-P., Zhang, M.-X., ... Tian, Z.-Q. (2020). Core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory. Proc. Of the 7th Asian Spectroscopy Conference (ASC 2020). doi:10.32655/ASC_8-10_Dec2020.10 https://hdl.handle.net/10356/144198 10.32655/ASC_8-10_Dec2020.10 en © 2020 Nanyang Technological University. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Science::Chemistry
Molecule Spectroscopies
Shell-isolated Nanoparticles
spellingShingle Science::Chemistry
Molecule Spectroscopies
Shell-isolated Nanoparticles
Li, Jian-Feng
Ding, Song-Yuan
Li, Chao-Yu
Shen, Shao-Xin
Huang, Ya-Ping
Zhang, Mao-Xin
Yi, Jun
Tian, Zhong-Qun
Core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory
description To break through the bottleneck of SERS development in the surface analysis of a great variety of non-SERS active materials and atomically flat single-crystals, we invented shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in 2010 [1]. The shell-isolated nanoparticle-enhanced mode is capable of characterizing the surface water, reaction intermediate species in many important electrocatalytic or photo-electrocatalytic systems, and interfacial structures of the solid electrolyte film [2]. The strategy of using shell-isolated nanoparticles is grossly extendable to other surface spectroscopies, like surface-enhanced fluorescence spectroscopy [3], surface-enhanced second-harmonic generation [4], sum-frequency vibrational spectroscopy, and tip-enhanced spectroscopies [5], to improve the enhancement factor (up to 105) or spatial resolution (down to 10 nm). It will attract more attention if these techniques are applied to in-situ monitor the actual catalytic reaction systems, e.g., at single atoms or a single molecule. In the aspect of fundamental understanding of SHINERS, New plasmonic nanostructures and relevant instrumentation and theory for pushing sensitivity to the limit will be discussed in details [6]. Finally, we would like to explore on the radiation enhancement that cannot be easily predicted by the local field enhancement in the presence of plane-wave illumination at the Raman scattered wavelength in the case of nanoparticle-on-mirror substrate. The mismatch could be understood by the radiation enhancement of the optical antenna in the reaction near-field region instead of the far-field region [7].
author2 Asian Spectroscopy Conference 2020
author_facet Asian Spectroscopy Conference 2020
Li, Jian-Feng
Ding, Song-Yuan
Li, Chao-Yu
Shen, Shao-Xin
Huang, Ya-Ping
Zhang, Mao-Xin
Yi, Jun
Tian, Zhong-Qun
format Conference or Workshop Item
author Li, Jian-Feng
Ding, Song-Yuan
Li, Chao-Yu
Shen, Shao-Xin
Huang, Ya-Ping
Zhang, Mao-Xin
Yi, Jun
Tian, Zhong-Qun
author_sort Li, Jian-Feng
title Core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory
title_short Core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory
title_full Core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory
title_fullStr Core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory
title_full_unstemmed Core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory
title_sort core-shell nanoparticle-based plasmon-enhanced molecule spectroscopies : from methodology to theory
publishDate 2020
url https://hdl.handle.net/10356/144198
_version_ 1683493059697836032