Superoscillatory quartz lens with effective numerical aperture greater than one
We report super-resolution high-numerical-aperture and long-working-distance superoscillatory quartz lenses for focusing and imaging applications. At the wavelength of λ = 633 nm, the lenses have an effective numerical aperture of 1.25, a working distance of 200 μm, and a focus into a hotspot of 0.4...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/144296 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We report super-resolution high-numerical-aperture and long-working-distance superoscillatory quartz lenses for focusing and imaging applications. At the wavelength of λ = 633 nm, the lenses have an effective numerical aperture of 1.25, a working distance of 200 μm, and a focus into a hotspot of 0.4λ. Confocal imaging with resolution determined by the superoscillatory hotspot size is experimentally demonstrated. |
---|