Percolation theories for multipartite networked systems under random failures

Real-world complex systems inevitably suffer from perturbations. When some system components break down and trigger cascading failures on a system, the system will be out of control. In order to assess the tolerance of complex systems to perturbations, an effective way is to model a system as a netw...

全面介紹

Saved in:
書目詳細資料
Main Authors: Cai, Qing, Alam, Sameer, Pratama, Mahardhika, Wang, Zhen
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/144368
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Real-world complex systems inevitably suffer from perturbations. When some system components break down and trigger cascading failures on a system, the system will be out of control. In order to assess the tolerance of complex systems to perturbations, an effective way is to model a system as a network composed of nodes and edges and then carry out network robustness analysis. Percolation theories have proven as one of the most effective ways for assessing the robustness of complex systems. However, existing percolation theories are mainly for multilayer or interdependent networked systems, while little attention is paid to complex systems that are modeled as multipartite networks. This paper fills this void by establishing the percolation theories for multipartite networked systems under random failures. To achieve this goal, this paper first establishes two network models to describe how cascading failures propagate on multipartite networks subject to random node failures. Afterward, this paper adopts the largest connected component concept to quantify the networks’ robustness. Finally, this paper develops the corresponding percolation theories based on the developed network models. Simulations on computer-generated multipartite networks demonstrate that the proposed percolation theories coincide quite well with the simulations.