Photocurable platelet rich plasma bioadhesives

Closure of wounds with tissue adhesives has many advantages over sutures, but existing synthetic adhesives are toxic and have poor workability. Blood-derived adhesives display complete resorption but have adhesion too weak for reliable wound dressings. We propose a semi-synthetic design that combine...

Full description

Saved in:
Bibliographic Details
Main Authors: Singh, Manisha, Nanda, Himansu Sekhar, Lee, Justin Yin Hao, Wang, Jun Kit, Tan, Nguan Soon, Steele, Terry W. J.
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/144379
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Closure of wounds with tissue adhesives has many advantages over sutures, but existing synthetic adhesives are toxic and have poor workability. Blood-derived adhesives display complete resorption but have adhesion too weak for reliable wound dressings. We propose a semi-synthetic design that combines the positive attributes of synthetic and blood-derived tissue adhesives. PAMAM-g-diazirine (PDz) is a rapidly gelling bioadhesive miscible in both aqueous and organic solvents. PDz blended with platelet-rich plasma (PRP) forms PDz/PRP composite, a semi-synthetic formulation that combines PDz’s wet tissue adhesion with PRP’s potent wound healing properties. Light-activated PDz/PRP bioadhesive composite has similar elasticity to soft tissues and behaves as an induced hemostat—an unmet clinical need for rapid wound dressings. PDz/PRP composite applied to in vivo full-thickness wounds observed a 25% reduction in inflammation, as assessed by the host-cell response.