Enhanced feature fusion through irrelevant redundancy elimination in intra-class and extra-class discriminative correlation analysis
Feature fusion aims to provide enhancements of data authenticity in both traditional and deep learning pattern analysis. Canonical Correlation Analysis (CCA) based feature fusion is a main technique for exploring the mutual relationships of multiple feature sets. In traditional CCA-based feature fus...
Saved in:
Main Authors: | Wu, Zuobin, Mao, Kezhi, Ng, Gee-Wah |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/144648 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Feature fusion with covariance matrix regularization in face recognition
由: Lu, Ze, et al.
出版: (2018) -
Multimedia Decision Fusion
由: WANG XIANGYU
出版: (2012) -
Sparse kernel canonical correlation analysis
由: Chu, D., et al.
出版: (2014) -
Sparse Dimensionality Reduction Methods: Algorithms and Applications
由: ZHANG XIAOWEI
出版: (2013) -
Probability fusion for correlated multimedia streams
由: Atrey, P.K., et al.
出版: (2013)