An expanded synthetic biology toolkit for gene expression control in Acetobacteraceae

The availability of different host chassis will greatly expand the range of applications in synthetic biology. Members of the Acetobacteraceae family of Gram-negative bacteria form an attractive class of nonmodel microorganisms that can be exploited to produce industrial chemicals, food and beverage...

Full description

Saved in:
Bibliographic Details
Main Authors: Teh, Min Yan, Ooi, Kean Hean, Teo, Danny Shun Xiang, Mohammad Ehsan Mansoor, Lim, Shaun Wen Zheng, Tan, Meng How
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/144734
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The availability of different host chassis will greatly expand the range of applications in synthetic biology. Members of the Acetobacteraceae family of Gram-negative bacteria form an attractive class of nonmodel microorganisms that can be exploited to produce industrial chemicals, food and beverage, and biomaterials. One such biomaterial is bacterial cellulose, which is a strong and ultrapure natural polymer used in tissue engineering scaffolds, wound dressings, electronics, food additives, and other products. However, despite the potential of Acetobacteraceae in biotechnology, there has been considerably little effort to fundamentally reprogram the bacteria for enhanced performance. One limiting factor is the lack of a well-characterized, comprehensive toolkit to control expression of genes in biosynthetic pathways and regulatory networks to optimize production and cell viability. Here, we address this shortcoming by building an expanded genetic toolkit for synthetic biology applications in Acetobacteraceae. We characterized the performance of multiple natural and synthetic promoters, ribosome binding sites, terminators, and degradation tags in three different strains, namely, Gluconacetobacter xylinus ATCC 700178, Gluconacetobacter hansenii ATCC 53582, and Komagataeibacter rhaeticus iGEM. Our quantitative data revealed strain-specific and common design rules for the precise control of gene expression in these industrially relevant bacterial species. We further applied our tools to synthesize a biodegradable cellulose-chitin copolymer, adjust the structure of the cellulose film produced, and implement CRISPR interference for ready down-regulation of gene expression. Collectively, our genetic parts will enable the efficient engineering of Acetobacteraceae bacteria for the biomanufacturing of cellulose-based materials and other commercially valuable products.