Supersolidity of undercoordinated and hydrating water
Supersolidity of ice, which was proposed in 2013 and intensively verified since then [C. Q. Sun et al., Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors, J. Phys. Chem. Lett., 2013, 4, 2565-2570; C. Q. Sun et al., Density and phonon-stiffness anomalies o...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/144930 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-144930 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1449302020-12-03T06:40:44Z Supersolidity of undercoordinated and hydrating water Sun, Chang Qing School of Electrical and Electronic Engineering NOVITUS Engineering::Electrical and electronic engineering Hydration Undercoordination Supersolidity of ice, which was proposed in 2013 and intensively verified since then [C. Q. Sun et al., Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors, J. Phys. Chem. Lett., 2013, 4, 2565-2570; C. Q. Sun et al., Density and phonon-stiffness anomalies of water and ice in the full temperature range, J. Phys. Chem. Lett., 2013, 4, 3238-3244], refers to the water molecules being polarized by molecular undercoordination, which is associated with the skin of bulk ice, nanobubbles, and nanodroplets (often called confinement), or by the electrostatic field of ions in salt solutions [X. Zhang et al., Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating, Phys. Chem. Chem. Phys., 2014, 16(45), 24666-24671; C. Q. Sun et al., (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities, J. Phys. Chem. B, 2018, 122(3), 1228-1238]. From the perspective of hydrogen bond (O:H-O or HB with ":" representing the lone pairs on O2-) cooperative relaxation and polarization, this review features the recent progress and recommends future trends in understanding the bond-electron-phonon correlation in the supersolid phase. Supersolidity is characterized by a shorter and stiffer H-O bond, longer and softer O:H nonbond, deeper O 1s energy band, and longer photoelectron and phonon lifetimes. The supersolid phase is less dense, viscoelastic, and mechanically and thermally more stable. Furthermore, O:H-O bond cooperative relaxation offsets the boundaries of structural phases and increases the melting point while lowering the freezing temperature of ice, which is known as supercooling and superheating. Accepted version 2020-12-03T06:40:44Z 2020-12-03T06:40:44Z 2018 Journal Article Sun, C. Q. (2018). Supersolidity of undercoordinated and hydrating water. Physical Chemistry Chemical Physics, 20(48), 30104-30119. doi:10.1039/c8cp06115g 1463-9076 https://hdl.handle.net/10356/144930 10.1039/c8cp06115g 30512022 48 20 30104 30119 en Physical Chemistry Chemical Physics © 2018 the Owner Societies. All rights reserved. This paper was published by Royal Society of Chemistry in Physical Chemistry Chemical Physics and is made available with permission of the Owner Societies. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Electrical and electronic engineering Hydration Undercoordination |
spellingShingle |
Engineering::Electrical and electronic engineering Hydration Undercoordination Sun, Chang Qing Supersolidity of undercoordinated and hydrating water |
description |
Supersolidity of ice, which was proposed in 2013 and intensively verified since then [C. Q. Sun et al., Density, Elasticity, and Stability Anomalies of Water Molecules with Fewer than Four Neighbors, J. Phys. Chem. Lett., 2013, 4, 2565-2570; C. Q. Sun et al., Density and phonon-stiffness anomalies of water and ice in the full temperature range, J. Phys. Chem. Lett., 2013, 4, 3238-3244], refers to the water molecules being polarized by molecular undercoordination, which is associated with the skin of bulk ice, nanobubbles, and nanodroplets (often called confinement), or by the electrostatic field of ions in salt solutions [X. Zhang et al., Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating, Phys. Chem. Chem. Phys., 2014, 16(45), 24666-24671; C. Q. Sun et al., (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities, J. Phys. Chem. B, 2018, 122(3), 1228-1238]. From the perspective of hydrogen bond (O:H-O or HB with ":" representing the lone pairs on O2-) cooperative relaxation and polarization, this review features the recent progress and recommends future trends in understanding the bond-electron-phonon correlation in the supersolid phase. Supersolidity is characterized by a shorter and stiffer H-O bond, longer and softer O:H nonbond, deeper O 1s energy band, and longer photoelectron and phonon lifetimes. The supersolid phase is less dense, viscoelastic, and mechanically and thermally more stable. Furthermore, O:H-O bond cooperative relaxation offsets the boundaries of structural phases and increases the melting point while lowering the freezing temperature of ice, which is known as supercooling and superheating. |
author2 |
School of Electrical and Electronic Engineering |
author_facet |
School of Electrical and Electronic Engineering Sun, Chang Qing |
format |
Article |
author |
Sun, Chang Qing |
author_sort |
Sun, Chang Qing |
title |
Supersolidity of undercoordinated and hydrating water |
title_short |
Supersolidity of undercoordinated and hydrating water |
title_full |
Supersolidity of undercoordinated and hydrating water |
title_fullStr |
Supersolidity of undercoordinated and hydrating water |
title_full_unstemmed |
Supersolidity of undercoordinated and hydrating water |
title_sort |
supersolidity of undercoordinated and hydrating water |
publishDate |
2020 |
url |
https://hdl.handle.net/10356/144930 |
_version_ |
1688654668737019904 |