Symmetric and skew-symmetric {0, ±1} - matrices with large determinants
We show that the existence of {±}-matrices having largest possible determinant is equivalent to the existence of certain tournament matrices. In particular, we prove a recent conjecture of Armario. We also show that large submatrices of conference matrices are determined by their spectrum.
Saved in:
Main Authors: | Greaves, Gary, Suda, Sho |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/144977 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
On the Smith normal form of a skew-symmetric D-optimal design of order n≡2 (mod4)
由: Greaves, Gary Royden Watson, et al.
出版: (2021) -
A Framework for Coloring Symmetrical Patterns
由: De Las Peñas, Ma. Louise Antonette N, et al.
出版: (1999) -
Williamson matrices and a conjecture of Ito's
由: Bernhard, Schmidt.
出版: (2009) -
Constructions of relative difference sets with classical parameters and circulant weighing matrices
由: Leung, Ka Hin, et al.
出版: (2009) -
New hadamard matrices of order 4p^2 obtained from Jacobi sums of order 16
由: Bernhard, Schmidt, et al.
出版: (2009)