Eco-modular product architecture identification and assessment for product recovery

In order to improve the efficiency of disassembly and product recovery of an abandoned product at the end-of-life stage, it is essential to develop modular product architecture by considering manufacturing and recovering processes in early product design stage. In this paper, a novel concept of a de...

Full description

Saved in:
Bibliographic Details
Main Authors: Kim, Samyeon, Moon, Seung Ki
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/144995
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In order to improve the efficiency of disassembly and product recovery of an abandoned product at the end-of-life stage, it is essential to develop modular product architecture by considering manufacturing and recovering processes in early product design stage. In this paper, a novel concept of a design methodology is introduced to develop eco-modular product architecture and assess the modularity of the architecture from the viewpoint of product recovery. Eco-modular product architecture contributes to enhancing product recovery processes by recycling and reusing modules without full disassembly at component or material levels. It leads to less consumption of natural resources and less landfill damage to the environment. Three sustainable modular drivers, namely, interface complexity, material similarity, and lifespan similarity, are introduced to reconstruct the modular architecture of commercial products into the eco-modular architecture. Alternatives of modular architectures are identified by Markov Cluster Algorithm based on these sustainable modular drivers and physical interconnections of the components of product architecture. To select the eco-modular architecture from these alternatives, we propose modularity assessment metrics to identify independent interactions between modules and the degrees of similarity within each module. To demonstrate the effectiveness of the proposed methodology, a case study is performed with a coffee maker.