Pressure-induced phase transitions and bandgap-tuning effect of methylammonium lead iodide perovskite

Pressure-induced crystallographic transitions and optical behavior of MAPbI3 (MA=methylammonium) were investigated using in-situ synchrotron X-ray diffraction and laser-excited photoluminescence spectroscopy. We observed that the tetragonal phase that presents under ambient pressure transformed to a...

全面介紹

Saved in:
書目詳細資料
Main Authors: Jiang, Shaojie, Fang, Yanan, Li, Ruipeng, White, Timothy John, Wang, Zhongwu, Baikie, Tom, Fang, Jiye
其他作者: School of Materials Science and Engineering
格式: Article
語言:English
出版: 2020
主題:
在線閱讀:https://hdl.handle.net/10356/145008
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Pressure-induced crystallographic transitions and optical behavior of MAPbI3 (MA=methylammonium) were investigated using in-situ synchrotron X-ray diffraction and laser-excited photoluminescence spectroscopy. We observed that the tetragonal phase that presents under ambient pressure transformed to a ReO3-type cubic phase at 0.3 GPa, which further converted into a putative orthorhombic structure at 2.7 GPa. The sample was finally separated into crystalline and amorphous fractions beyond 4.7 GPa. During the decompression, the phase-mixed material restored the original structure in two distinct pathways depending on the peak pressures. Being monitored using a laser-excited photoluminescence technique under each applied pressure, it was determined that the bandgap reduced with an increase of the pressure till 0.3 GPa and then enlarged with an increase of the pressure up to 2.7 GPa. This work lays the foundation for understanding pressure-induced phase transitions and bandgap tuning of MAPbI3, enriching potentially the toolkit for engineering perovskites related photovoltaic devices.