Model predictive control of discrete T-S fuzzy systems with time-varying delay
Robust model predictive control of discrete nonlinear systems with bounded time-varying delay and persistent disturbances is investigated in this paper. The T-S fuzzy systems are utilized to represent nonlinear systems. A Razumikhin-type Lyapunov function is adopted for time-delay systems due to its...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/145031 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | Robust model predictive control of discrete nonlinear systems with bounded time-varying delay and persistent disturbances is investigated in this paper. The T-S fuzzy systems are utilized to represent nonlinear systems. A Razumikhin-type Lyapunov function is adopted for time-delay systems due to its advantage in reducing the complexity especially for systems with large delays and disturbances. The robust positive invariance set theory for systems subjected to time-varying delay and disturbances is analyzed. In addition, the input-to-state stability is realized due to persistent disturbances. The controller synthesis conditions are derived by solving a sequence of matrix inequalities. Simulation on a continuous stirred-tank reactor (CSTR) is illustrated to verify the effectiveness of the proposed method. |
---|