Non-Hermitian dirac cones
Non-Hermitian systems containing gain or loss commonly host exceptional point degeneracies, not the diabolic points that, in Hermitian systems, play a key role in topological transitions and related phenomena. Non-Hermitian Hamiltonians with parity-time symmetry can have real spectra but generally n...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/145069 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Non-Hermitian systems containing gain or loss commonly host exceptional point degeneracies, not the diabolic points that, in Hermitian systems, play a key role in topological transitions and related phenomena. Non-Hermitian Hamiltonians with parity-time symmetry can have real spectra but generally nonorthogonal eigenstates, impeding the emergence of diabolic points. We introduce a pair of symmetries that induce not only real eigenvalues but also pairwise eigenstate orthogonality. This allows non-Hermitian systems to host Dirac points and other diabolic points. We construct non-Hermitian models exhibiting three exemplary phenomena previously limited to the Hermitian regime: Haldane-type topological phase transition, Landau levels without magnetic fields, and Weyl points. This establishes a new connection between non-Hermitian physics and the rich phenomenology of diabolic points. |
---|